Integrable Evolution Equations on Associative Algebras
نویسندگان
چکیده
منابع مشابه
Integrable ODEs on Associative Algebras
In this paper we give definitions of basic concepts such as symmetries, first integrals, Hamilto-nian and recursion operators suitable for ordinary differential equations on associative algebras, and in particular for matrix differential equations. We choose existence of hierarchies of first integrals and/or symmetries as a criterion for integrability and justify it by examples. Using our compo...
متن کاملO-operators on Associative Algebras and Associative Yang-baxter Equations
We introduce the concept of an extended O-operator that generalizes the wellknown concept of a Rota-Baxter operator. We study the associative products coming from these operators and establish the relationship between extended O-operators and the associative Yang-Baxter equation, extended associative Yang-Baxter equation and generalized Yang-Baxter equation.
متن کاملContinuous-discrete integrable equations and Darboux transformations as deformations of associative algebras
Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDA’s) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for the case of DDA being the algebra of shifts. Concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed co...
متن کاملQuantum deformations of associative algebras and integrable systems
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curvature tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the ...
متن کاملDiscrete integrable systems and deformations of associative algebras
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the Deformatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1998
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s002200050328